Modulation of neurite outgrowth by activation of calcium-permeable kainate receptors expressed by rat nociceptive-like dorsal root ganglion neurons.

نویسندگان

  • Donald J Joseph
  • Damian J Williams
  • Amy B MacDermott
چکیده

Neurite outgrowth is a fundamental step in establishing proper neuronal connections in the developing central nervous system. Dynamic control of outgrowth has been attributed to changes in growth cone Ca2+ levels in response to extracellular cues. Here we have investigated a possible role for Ca2+ permeable kainate (KA) receptors in regulating neurite outgrowth of nociceptive-like dorsal root ganglion (DRG) neurons. To identify KA receptor subunits likely to be involved, we used quantitative RT-PCR on acutely dissociated DRG and dorsal horn neurons. DRG neurons expressed more GluK1, particularly the GluK1b spice variant, than dorsal horn neurons. Conversely, dorsal horn neurons expressed more GluK2, particularly GluK2a, than DRG neurons. Further, an RNA editing assay indicated that the majority of GluK1 and GluK2 mRNA transcripts in DRG were unedited. Imaging Ca2+ transients following application of a KA receptor agonist to DRG and dorsal horn co-cultures revealed increases in intracellular Ca2+ in the growth cones of DRG neurons. In the majority of cases, this increase in Ca2+ was partly or completely blocked by Joro spider toxin (JSTX), an antagonist for Ca2+-permeable AMPA and KA receptors. Treatment of DRG/dorsal horn co-cultures with KA for 18 hours suppressed neurite outgrowth while application of the rapidly desensitizing KA receptor agonist SYM 2081, the competitive AMPA/KA receptor antagonist, CNQX, and JSTX or philanthotoxin enhanced neurite outgrowth and prevented KA effects on neurite outgrowth. Thus, Ca2+ entry through KA receptors at the growth cone of DRG neurons may be an important regulator of neurite outgrowth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collagen as Adherent Substratum and Inducer of Dorsal Root Ganglia Outgrowth

Neurite outgrowth from dorsal root ganglion (DRG) explants is a method of evaluating neurotrophic activity of growth factors. When complete medium containing collagen was supplemented with nerve growth factor (NGF) DRG outgrowth was observed after 18 h. In the absence of NGF and in the presence of collagen, the DRG outgrowth took place after 72 h. In wells not supplemented with collagen gel in ...

متن کامل

Role of kainate receptors in nociception.

Nociceptive nerve fibers use L-glutamate as a fast excitatory neurotransmitter and it is therefore not surprising that both, ionotropic and metabotropic glutamate receptors play pivotal roles for transmission of nociceptive information in spinal cord. A subtype of ionotropic glutamate receptors, the kainate receptor, is present in spinal dorsal horn. However, its role has remained obscure as sp...

متن کامل

The distribution of neurons expressing calcium-permeable AMPA receptors in the superficial laminae of the spinal cord dorsal horn.

The superficial dorsal horn is a major site of termination of nociceptive primary afferents. Fast excitatory synaptic transmission in this region is mediated mainly by release of glutamate onto postsynaptic AMPA and NMDA receptors. NMDA receptors are known to be Ca2+-permeable and to provide synaptically localized Ca2+ signals that mediate short-term and long-term changes in synaptic strength. ...

متن کامل

TRPC4 in rat dorsal root ganglion neurons is increased after nerve injury and is necessary for neurite outgrowth.

Canonical transient receptor potential (TRPC) receptors are Ca(2+)-permeable cation channels that have a variety of physiological functions and may be involved in neuronal development and plasticity. We investigated the expression profile of TRPC channels in adult rat dorsal root ganglia (DRG) after nerve injury and examined the role of TRPC4 in neurite outgrowth in cultured DRG neurons. Sciati...

متن کامل

Morphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat

Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental neurobiology

دوره 71 10  شماره 

صفحات  -

تاریخ انتشار 2011